Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Med ; 5(4): 100607, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36925663

RESUMEN

Rationale & Objective: Mono-allelic variants in COL4A3 and COL4A4 (COL4A3/COL4A4) have been identified in a spectrum of glomerular basement membrane nephropathies, including thin basement membrane nephropathy and autosomal dominant Alport syndrome. With the increasing use of next generation sequencing, mono-allelic COL4A3/COL4A4 variants are detected more frequently, but phenotypic heterogeneity impedes counseling. We aimed to investigate the phenotypic spectrum, kidney biopsy results, and segregation patterns of patients with mono-allelic COL4A3/COL4A4 variants identified by whole exome sequencing. Study Design: Case series. Setting & Participants: We evaluated clinical and pathologic characteristics of 17 Dutch index patients with mono-allelic variants in COL4A3/COL4A4 detected by diagnostic whole exome sequencing and 25 affected family members with variants confirmed by Sanger sequencing. Results: Eight different mono-allelic COL4A3/COL4A4 variants were identified across members of 11 families, comprising 7 glycine substituted missense variants and 1 frameshift variant. All index patients had microscopic hematuria at clinical presentation (median age 43 years) and 14 had (micro)albuminuria/proteinuria. All family members showed co-segregation of the variant with at least hematuria. At end of follow-up of all 42 individuals (median age 54 years), 16/42 patients had kidney function impairment, of whom 6 had kidney failure. Reports of kidney biopsies of 14 patients described thin basement membrane nephropathy, focal segmental glomerulosclerosis, minimal change lesions, and Alport syndrome. Electron microscopy images of 7 patients showed a significantly thinner glomerular basement membrane compared with images of patients with idiopathic focal segmental glomerulosclerosis and other hereditary glomerular diseases. No genotype-phenotype correlations could be established. Limitations: Retrospective design, ascertainment bias toward severe kidney phenotypes, and familial hematuria. Conclusions: This study confirms the wide phenotypic spectrum associated with mono-allelic COL4A3/COL4A4 variants, extending from isolated microscopic hematuria to kidney failure with high intra- and interfamilial variability.

2.
FASEB J ; 37(1): e22696, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520027

RESUMEN

Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox ß (HNF1ß) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1ß explaining the kidney phenotype of HNF1ß patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1ß and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.


Asunto(s)
Quistes , Enfermedades Renales Quísticas , Animales , Humanos , Ratones , Quistes/genética , Quistes/metabolismo , Electrólitos/metabolismo , Riñón/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Ratones Noqueados , Factores de Transcripción/metabolismo , Activación Transcripcional
3.
J Pathol ; 259(2): 149-162, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373978

RESUMEN

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Humanos , Túbulos Renales Proximales/patología , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Células Epiteliales , Glucólisis
4.
Front Cell Dev Biol ; 10: 765887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372336

RESUMEN

It is well established that mammalian kidney epithelial cells contain a single non-motile primary cilium (9 + 0 pattern). However, we noted the presence of multiple motile cilia with a central microtubular pair (9 + 2 pattern) in kidney biopsies of 11 patients with various kidney diseases, using transmission electron microscopy. Immunofluorescence staining revealed the expression of the motile cilia-specific markers Radial Spoke Head Protein 4 homolog A, Forkhead-box-protein J1 and Regulatory factor X3. Multiciliated cells were exclusively observed in proximal tubuli and a relative frequent observation in human kidney tissue: in 16.7% of biopsies with tubular injury and atrophy (3 of 18 tissues), in 17.6% of biopsies from patients with membranous nephropathy (3 of 17 tissues) and in 10% of the human kidney tissues derived from the unaffected pole after tumour nephrectomy (3 of 30 tissues). However, these particular tissues showed marked tubular injury and fibrosis. Further analysis showed a significant relation between the presence of multiciliated cells and an increased expression of alpha-smooth-muscle-actin (p-value < 0.01) and presence of Kidney-injury-molecule-1 (p-value < 0.01). Interestingly, multiciliated cells co-showed staining for the scattered tubular cell markers annexin A2, annexin A3, vimentin and phosphofructokinase platelet but not with cell senescence associated markers, like (p16) and degradation of lamin B. In conclusion, multiciliated proximal tubular cells with motile cilia were frequently observed in kidney biopsies and associated with tubular injury and interstitial fibrosis. These data suggest that proximal tubular cells are able to transdifferentiate into multiciliated cells.

5.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417019

RESUMEN

Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies.


Asunto(s)
Síndrome Nefrótico , Células Madre Pluripotentes , Podocitos , Femenino , Humanos , Riñón/metabolismo , Masculino , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Organoides , Células Madre Pluripotentes/metabolismo , Podocitos/metabolismo , Podocitos/patología
6.
Cell Stem Cell ; 29(2): 217-231.e8, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032430

RESUMEN

Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/complicaciones , Fibrosis , Humanos , Riñón , Organoides/patología , Síndrome Post Agudo de COVID-19
7.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613637

RESUMEN

Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Humanos , Podocitos/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Gotas Lipídicas/metabolismo , Glomérulos Renales/metabolismo , Biomarcadores/metabolismo
8.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927672

RESUMEN

In the glomerulus, Bowman's space is formed by a continuum of glomerular epithelial cells. In focal segmental glomerulosclerosis (FSGS), glomeruli show segmental scarring, a result of activated parietal epithelial cells (PECs) invading the glomerular tuft. The segmental scars interrupt the epithelial continuum. However, non-sclerotic segments seem to be preserved even in glomeruli with advanced lesions. We studied the histology of the segmental pattern in Munich Wistar Frömter rats, a model for secondary FSGS. Our results showed that matrix layers lined with PECs cover the sclerotic lesions. These PECs formed contacts with podocytes of the uninvolved tuft segments, restoring the epithelial continuum. Formed Bowman's spaces were still connected to the tubular system. In biopsies of patients with secondary FSGS, we also detected matrix layers formed by PECs, separating the uninvolved from the sclerotic glomerular segments. PECs have a major role in the formation of glomerulosclerosis; we show here that in FSGS they also restore the glomerular epithelial cell continuum that surrounds Bowman's space. This process may be beneficial and indispensable for glomerular filtration in the uninvolved segments of sclerotic glomeruli.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Animales , Cápsula Glomerular/patología , Células Epiteliales/patología , Femenino , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Glomérulos Renales/patología , Masculino , Ratas , Ratas Wistar
9.
Sci Rep ; 10(1): 8580, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444668

RESUMEN

Anti-Thy1.1 transgenic mice develop glomerular lesions that mimic collapsing focal segmental glomerulosclerosis (FSGS) in humans with collapse of the glomerular tuft and marked hyperplasia of the parietal epithelial cells (PECs). Immunostaining of phosphor-S6 ribosomal protein (pS6RP) revealed high mTOR activity in PECs of the FSGS lesions of these mice. In this study we questioned whether the mTOR inhibitor rapamycin (sirolimus) could attenuate the development and progression of glomerulosclerotic lesions in the anti-Thy1.1 transgenic mice. We observed reduced mTOR signalling and proliferation in human parietal epithelial cells after rapamycin treatment. Experiments with anti-Thy1.1. mice showed that early treatment with sirolimus reduced the development of glomerular lesions and glomerular cell proliferation at day 4. Levels of albuminuria, podocyte injury and podocyte number were similar in the sirolimus and vehicle treated groups. The initial beneficial effects of sirolimus treatment were not observed at day 7. Late sirolimus treatment did not reduce albuminuria or the progression of glomerulosclerosis. Taken together, rapamycin attenuated PEC proliferation and the formation of early FSGS lesions in experimental FSGS and reduced human PEC proliferation in vitro. However, the initial inhibition of PEC proliferation did not translate into a decline of albuminuria nor in a sustained reduction in sclerotic lesions.


Asunto(s)
Albuminuria/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Esclerosis/patología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Albuminuria/tratamiento farmacológico , Albuminuria/metabolismo , Animales , Proliferación Celular , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis/tratamiento farmacológico , Esclerosis/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Antígenos Thy-1/fisiología
10.
Kidney Int ; 93(3): 626-642, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29276101

RESUMEN

A key feature of glomerular diseases such as crescentic glomerulonephritis and focal segmental glomerulosclerosis is the activation, migration and proliferation of parietal epithelial cells. CD44-positive activated parietal epithelial cells have been identified in proliferative cellular lesions in glomerular disease. However, it remains unknown whether CD44-positive parietal epithelial cells contribute to the pathogenesis of scarring glomerular diseases. Here, we evaluated this in experimental crescentic glomerulonephritis and the transgenic anti-Thy1.1 model for collapsing focal segmental glomerulosclerosis in CD44-deficient (cd44-/-) and wild type mice. For both models albuminuria was significantly lower in cd44-/- compared to wild type mice. The number of glomerular Ki67-positive proliferating cells was significantly reduced in cd44-/- compared to wild type mice, which was associated with a reduced number of glomerular lesions in crescentic glomerulonephritis. In collapsing focal segmental glomerulosclerosis, the extracapillary proliferative cellular lesions were smaller in cd44-/- mice, but the number of glomerular lesions was not different compared to wild type mice. For crescentic glomerulonephritis the influx of granulocytes and macrophages into the glomerulus was similar. In vitro, the growth of CD44-deficient murine parietal epithelial cells was reduced compared to wild type parietal epithelial cells, and human parietal epithelial cell migration could be inhibited using antibodies directed against CD44. Thus, CD44-positive proliferating glomerular cells, most likely parietal epithelial cells, are essential in the pathogenesis of scarring glomerular disease.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Células Epiteliales/inmunología , Glomeruloesclerosis Focal y Segmentaria/inmunología , Receptores de Hialuranos/inmunología , Glomérulos Renales/inmunología , Albuminuria/genética , Albuminuria/inmunología , Albuminuria/metabolismo , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/genética , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/metabolismo , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Autoanticuerpos/inmunología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de la Matriz Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Granulocitos/inmunología , Granulocitos/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Antígenos Thy-1/genética , Antígenos Thy-1/inmunología , Antígenos Thy-1/metabolismo
12.
Kidney Int ; 90(5): 1012-1022, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27575559

RESUMEN

Proteinuria is one of the first clinical signs of diabetic nephropathy and an independent predictor for the progression to renal failure. Cathepsin L, a lysosomal cysteine protease, can be involved in the development of proteinuria by degradation of proteins that are important for normal podocyte architecture, such as the CD2-associated protein, synaptopodin, and dynamin. Cathepsin L also activates heparanase, a heparan sulfate endoglycosidase previously shown to be crucial for the development of diabetic nephropathy. Here, we evaluated the exact mode of action of cathepsin L in the development of proteinuria in streptozotocin-induced diabetes. Cathepsin L-deficient mice, in contrast to their wild-type littermates, failed to develop albuminuria, mesangial matrix expansion, tubulointerstitial fibrosis, and renal macrophage influx and showed a normal renal function. In wild-type mice the early development of albuminuria correlated with the activation of heparanase and loss of heparan sulfate expression, whereas loss of synaptopodin expression and podocyte damage occurred at a later stage. Thus, cathepsin L is causally involved in the pathogenesis of experimental diabetic nephropathy. Most likely, cathepsin L-dependent heparanase activation is crucial for the development of albuminuria and renal damage.


Asunto(s)
Catepsina L/metabolismo , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/etiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Dinaminas/metabolismo , Glucuronidasa/metabolismo , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo
13.
Nephron ; 132(4): 301-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27050435

RESUMEN

BACKGROUND/AIMS: Plasma deficiency of pituitary adenylate cyclase-activating polypeptide (PACAP) was recently demonstrated in children with nephrotic syndrome (NS). Previous studies have reported an important protective effect of PACAP on kidney proximal tubules. The aim of this study was to explore the expression of PACAP and its receptors PAC1, VPAC1 and VPAC2 in the healthy and nephrotic kidney and to determine if PACAP has an effect on renal proximal tubular cells exposed to albumin. METHODS: Expression of PACAP and its receptors was studied using kidney tissue from healthy and nephrotic children, and in 3 human renal cell lines (glomerular microvascular endothelial cells, podocytes and proximal tubular epithelial HK-2 cells). The functionality of the VPAC1 receptor was tested in HK-2 cells, measuring cyclic adenosine monophosphate levels after PACAP exposure. The influence of PACAP on cell viability and transforming growth factor-ß1 (TGF-ß1) expression was measured in HK-2 cells exposed to albumin, mimicking proteinuria related damage. RESULTS: VPAC1 expression was detected in the tubular proximal epithelial cells and in the glomerular podocytes of renal tissue from healthy and nephrotic children. Increased staining for PACAP was found in the proximal tubules of renal sections from children with NS compared to healthy renal sections. Expression and functionality of VPAC1 were demonstrated in HK-2 cells. Finally, PACAP did not alter cell viability or TGF-ß1 expression of HK-2 cells exposed to albumin. CONCLUSION: VPAC1 is the predominant receptor in the human kidney. The enhanced presence of PACAP in proximal tubular epithelial cells in nephrotic kidneys points to the reabsorption of filtered PACAP. On short term, PACAP has no in vitro effect on cell viability and TGF-ß1 expression of proximal tubular epithelial cells exposed to high concentrations of albumin.


Asunto(s)
Enfermedades Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Línea Celular Transformada , Humanos , Túbulos Renales Proximales/citología
14.
Autophagy ; 12(7): 1195-205, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27105307

RESUMEN

Although non-medullary thyroid cancer (NMTC) generally has a good prognosis, 30-40% of patients with distant metastases develop resistance to radioactive iodine (RAI) therapy due to tumor dedifferentiation. For these patients, treatment options are limited and prognosis is poor. In the present study, expression and activity of autophagy was assessed in large sets of normal, benign and malignant tissues and was correlated with pathology, SLC5A5/hNIS (solute carrier family 5 member 5) protein expression, and with clinical response to RAI ablation therapy in NMTC patients. Fluorescent immunostaining for the autophagy marker LC3 was performed on 100 benign and 80 malignant thyroid tissues. Semiquantitative scoring was generated for both diffuse LC3-I intensity and number of LC3-II-positive puncta and was correlated with SLC5A5 protein expression and clinical parameters. Degree of diffuse LC3-I intensity and number of LC3-II-positive puncta scoring were not discriminative for benign vs. malignant thyroid lesions. Interestingly, however, in NMTC patients significant associations were observed between diffuse LC3-I intensity and LC3-II-positive puncta scoring on the one hand and clinical response to RAI therapy on the other hand (odds ratio [OR] = 3.13, 95% confidence interval [CI] =1.91-5.12, P = 0.01; OR = 5.68, 95%CI = 3.02-10.05, P = 0.002, respectively). Mechanistically, the number of LC3-II-positive puncta correlated with membranous SLC5A5 expression (OR = 7.71, 95%CI = 4.15-11.75, P<0.001), number of RAI treatments required to reach remission (P = 0.014), cumulative RAI dose (P = 0.026) and with overall remission and recurrence rates (P = 0.031). In conclusion, autophagy activity strongly correlates with clinical response of NMTC patients to RAI therapy, potentially by its capacity to maintain tumor cell differentiation and to preserve functional iodide uptake.


Asunto(s)
Autofagia/efectos de los fármacos , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/tratamiento farmacológico , Radioisótopos de Yodo/uso terapéutico , Simportadores/metabolismo , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/tratamiento farmacológico , Humanos , Pronóstico , Cáncer Papilar Tiroideo
15.
J Am Soc Nephrol ; 27(12): 3545-3551, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27026367

RESUMEN

Diabetic nephropathy (DN) is the leading cause of CKD in the Western world. Endothelin receptor antagonists have emerged as a novel treatment for DN, but the mechanisms underlying the protective effect remain unknown. We previously showed that both heparanase and endothelin-1 are essential for the development of DN. Here, we further investigated the role of these proteins in DN, and demonstrated that endothelin-1 activates podocytes to release heparanase. Furthermore, conditioned podocyte culture medium increased glomerular transendothelial albumin passage in a heparanase-dependent manner. In mice, podocyte-specific knockout of the endothelin receptor prevented the diabetes-induced increase in glomerular heparanase expression, consequent reduction in heparan sulfate expression and endothelial glycocalyx thickness, and development of proteinuria observed in wild-type counterparts. Our data suggest that in diabetes, endothelin-1 signaling, as occurs in endothelial activation, induces heparanase expression in the podocyte, damage to the glycocalyx, proteinuria, and renal failure. Thus, prevention of these effects may constitute the mechanism of action of endothelin receptor blockers in DN.


Asunto(s)
Endotelina-1/fisiología , Glucuronidasa/fisiología , Glicocálix/enzimología , Glomérulos Renales/enzimología , Glomérulos Renales/ultraestructura , Proteinuria/etiología , Animales , Nefropatías Diabéticas/etiología , Masculino , Ratones , Podocitos/enzimología
16.
Proteomics ; 15(21): 3722-30, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26304790

RESUMEN

Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein-2 (LIMP-2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP-2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co-localization of LIMP-2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP-2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP-2 in glomeruli of patients with iMN.


Asunto(s)
Glomerulonefritis Membranosa/orina , Glomeruloesclerosis Focal y Segmentaria/orina , Glomérulos Renales/patología , Proteínas de Membrana de los Lisosomas/análisis , Proteínas de Membrana de los Lisosomas/orina , Receptores Depuradores/análisis , Glomerulonefritis Membranosa/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos
17.
N Engl J Med ; 370(3): 245-53, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24325358

RESUMEN

The gray platelet syndrome is a hereditary, usually autosomal recessive bleeding disorder caused by a deficiency of alpha granules in platelets. We detected a nonsense mutation in the gene encoding the transcription factor GFI1B (growth factor independent 1B) that causes autosomal dominant gray platelet syndrome. Both gray platelets and megakaryocytes had abnormal marker expression. In addition, the megakaryocytes had dysplastic features, and they were abnormally distributed in the bone marrow. The GFI1B mutant protein inhibited nonmutant GFI1B transcriptional activity in a dominant-negative manner. Our studies show that GFI1B, in addition to being causally related to the gray platelet syndrome, is key to megakaryocyte and platelet development.


Asunto(s)
Plaquetas/patología , Síndrome de Plaquetas Grises/genética , Megacariocitos/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Médula Ósea/patología , Femenino , Genes Dominantes , Síndrome de Plaquetas Grises/patología , Humanos , Masculino , Linaje , Células Madre , Trombocitopenia/genética
18.
J Am Soc Nephrol ; 24(12): 1966-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23970123

RESUMEN

Under physiologic conditions, significant amounts of plasma protein pass the renal filter and are reabsorbed by proximal tubular cells, but it is not clear whether the endocytosed protein, particularly albumin, is degraded in lysosomes or returned to the circulatory system intact. To resolve this question, a transgenic mouse with podocyte-specific expression of doxycycline-inducible tagged murine albumin was developed. To assess potential glomerular backfiltration, two types of albumin with different charges were expressed. On administration of doxycycline, podocytes expressed either of the two types of transgenic albumin, which were secreted into the primary filtrate and reabsorbed by proximal tubular cells, resulting in serum accumulation. Renal transplantation experiments confirmed that extrarenal transcription of transgenic albumin was unlikely to account for these results. Genetic deletion of the neonatal Fc receptor (FcRn), which rescues albumin and IgG from lysosomal degradation, abolished transcytosis of both types of transgenic albumin and IgG in proximal tubular cells. In summary, we provide evidence of a transcytosis within the kidney tubular system that protects albumin and IgG from lysosomal degradation, allowing these proteins to be recycled intact.


Asunto(s)
Albuminuria/metabolismo , Túbulos Renales Proximales/metabolismo , Modelos Biológicos , Albúmina Sérica/metabolismo , Transcitosis/fisiología , Animales , Antibacterianos/farmacología , Doxiciclina/farmacología , Endocitosis/fisiología , Expresión Génica/efectos de los fármacos , Humanos , Inmunoglobulina G/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Trasplante de Riñón , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Podocitos/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Transgénicas , Albúmina Sérica/química , Albúmina Sérica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...